In other languages: Deutsch Español 日本語 한국어 Polski Português, Brasil Русский Українська 简体中文

Power production: Difference between revisions

From Official Factorio Wiki
Jump to navigation Jump to search
 
(102 intermediate revisions by 35 users not shown)
Line 1: Line 1:
The [[Electric network]] and [[Liquid network]] have many boundary points, when thinking for energy production. This page collects this points.
{{Languages}}
Electricity has to be produced before it can be transferred to consumers over the [[electric system]]. There are multiple methods to produce electricity:


== Building up power production ==
== Steam engine power ==
Each [[steam engine]] needs 0.5 [[boiler]]s when running at full capacity. One [[offshore pump]] can supply 200 boilers and 400 steam engines.


=== How much pumps, burners and steam engines should be built together? ===
The above ratio can be calculated from information available in-game: One boiler consumes 1.8MW of fuel and produces energy stored in [[steam]] at 100% efficiency. One steam engine consumes 900kW (0.9MW) of energy stored in steam, so each boiler can supply 2 steam engines: <math>\frac{1.8}{0.9} = 2</math>. One boiler consume 6 unit of [[water]] to produce 60 unit of [[steam]] per second, one steam engine consume 30 steam per second (3 units of water) and one offshore pump produces 1200 water per second, so each offshore pump produces enough water to supply 200 boilers: <math>\frac{1200}{6} = 200</math>. Two steam engines per boiler give us 400. This produces the 1:200:400 ratio.


Please look into [http://www.factorioforums.com/forum/viewtopic.php?f=5&t=3094 the article]!
[[File:SteamSetupExample.png|center|600px|thumb|A possible setup.]]


BurnHard says:
== Solar panels and accumulators ==
: 1 pump, 13(99% max load) - 14 (100% load) boilers, 10 engines


: .. roughly 1.31 boilers for every engine (eg 5 engines = 5*1.31= 6.55 = 7 boilers, one pump.)
=== Optimal ratio ===
: Just don't feed more than 10 engines and 14 boilers with one pump.


And an idea, which is eventually useful:
The optimal ratio is 0.84 (21:25) [[accumulator]]s per [[solar panel]], and 23.8 solar panels per megawatt required by your factory (this ratio accounts for solar panels needed to charge the accumulators). This means that you need 1.428 MW of production (of solar panels) and 100MJ of storage to provide 1 MW of power over one day-night cycle.
: If you want to go a step further, store hot water in tanks. I have tried a setup with only 15 boilers but 100 engines. The hot water after the boilers was stored in large (oil)tanks. At day when my solar worked the boilers had time to fill the storage with hot water, at night the steam engines drained the tanks.


== Producing enough energy? Checklist ==
A "close enough" ratio is 20:24:1 accumulators to solar panels to megawatts required (for example, a factory requiring 10 MW can be approximately entirely powered, day and night, by 200 accumulators and 240 solar panels - this approximation differs from optimal only in that it calls for 2 extra solar panels, which is negligible but remember that the difference between the "close enough" ratio and the optimal ratio increases as you add more solar panels).


* Did you connect the steam engine to the [[Electric network]]? If not, a flash is blinking (to show, that it is not connected). Add some [[Power pole]]s near the steam engines that go to machines needing that power.
This is taken from [http://www.factorioforums.com/forum/viewtopic.php?f=5&t=5594 Accumulator / Solar Panel Ratio] (which calculates this in an impressive mathematical way!) and [https://forums.factorio.com/viewtopic.php?p=143317#p143317 another post in that thread] (which calculates the solar panel to megawatt ratio in a different way).
* Did you build up your liquid network as described in the [[Liquid network#Basic|Liquid network basics]]?
[[File:9x9_accumulator_solar_panel_example.jpg|300px|thumb|top|A small 9x9 setup demonstrating the 20:24 "close enough" ratio above.]]
* Do you have enough [[pump]]s? You need 1 pump for every 9 [[steam engine]]s. It doesn't make sense to have more than 3 pumps, as the [[pipe]]s cannot transport more water.
* Does your liquid network has water? Look at the glass windows! Place two pipes after the last steam engine, to use it as a water sensor.
* Do you have enough [[Boiler]]s? The water temperature should reach 100 degrees. One of your burners should be reserve (not used, no lights in the burner) when you need to restart the energy system.


== More usages of the accumulators ==
=== Calculations ===


=== Reduce energy consumption in critical times ===
The optimal ratio of accumulators per solar panel relies on many values in the game. These include the power generation of a solar panel, the energy storage of an accumulator, the length of a [[Time#Days|day]], and the length of a night. There are also times between day and night called dusk and dawn which complicate the calculations. In vanilla factorio, without mods which change any of these values, the optimal ratio will be the same. This ratio is
[[Electric network#Storage|Accumulator]]s can be used to limit the need for power for some parts of your factory.


There are naturally 3 items, which are good candidates for that:
<math> \frac{\mathrm{Accumulators}}{\mathrm{SolarPanels}} = \frac{\left( \mathrm{day} + \mathrm{dawn} \right)}{\mathrm{gameday}} \cdot \left( \mathrm{night} + \frac{\mathrm{dawn} \cdot \left( \mathrm{day} + \mathrm{dawn} \right)}{\mathrm{gameday}} \right) \cdot \frac{\mathrm{SolarPower}}{\mathrm{AccumulatorEnergy}} </math>


* [[Radar]]
which, given the default time lengths of: day = 12500/60 s; dawn or dusk = 5000/60 s; night = 2500/60 s, and the default: Solar_power = 60 kW; Accumulator_energy = 5 MJ = 5000 kJ, gives the optimal ratio of 0.84 accumulators per solar panel. If the player uses mods which change the power generation of solar panels, or the energy storage of accumulators, but <b>not</b> the length of days, a simplified version of this equation can be used.
* [[Lab]]s
<pre>Accumulators / Solar_panels = 70 s × Solar_power / Accumulator_energy</pre>
* [[Electric furnace]]/[[electric mining drill|miner]]


How does it work?
This equation could also be used to remember the vanilla optimal ratio given its simplicity. If the only effect the mod has on the game is it changes the total length of one day, without changing the ratio of dusk : day : dawn : night, then the equation can be simplified as
<pre>Accumulators / Solar_panels = 0.002016 /s × game_day </pre>


An accumulator has a lower delivery priority than any other power-using entity, this guarantees, that it receives only energy, when you have enough. At the same time it can deliver energy in another electric network. Both facts together works in this case as a regulated transformer and delivers only energy into other networks, if you are producing enough. Or in other words: in a power shortage, only the unimportant parts of your factory stop - not the whole factory.
where game_day is the number of seconds in the game day which is 25000/60 s by default.


This is fine if you want to guarantee that basic functions of your factory keep working (lasers, ammo production, very dependent on your priorities) no matter how much power usage you add.
=== See also ===


This especially makes sense for radars - the radar explores new parts of the map, and consumes a large amount of energy. It makes sense to limit it, because when you are low on energy exploring is the least important thing.
* [http://www.factorioforums.com/forum/viewtopic.php?f=5&t=5168 Perfectly optimal solar network (Factorio forums)]
* [http://www.factorioforums.com/forum/viewtopic.php?f=18&t=5394 Solar ratios (Factorio forums)]
* [http://www.factorioforums.com/forum/viewtopic.php?f=5&t=7619 1 solar panel produces 42KW after factoring in the night (Factorio forums)]


In general this is a technique which works well only when you just researched accumulators and solar panels, but don't have enough resources to build big solar farms and accumulator farms.
== Nuclear power ==
[[File:Nuclear setup.png|thumb|700px|right|Uranium processing for nuclear power.]]
:''See also: [[Tutorial:Nuclear power]]''
In general, nuclear power is produced by the following production chain: [[Uranium ore]] is mined and [[Uranium processing|processed]] to [[uranium-235]] and [[uranium-238]], then [[uranium fuel cell]]s are created from the two. These fuel cells are then burned in a [[nuclear reactor]] to create heat. The heat can be used to convert [[water]] to [[steam]] using a [[heat exchanger]] and the steam can be consumed by [[steam turbine]]s to produce power.


- todo : pics from a radar station, research labs and electric furnace behind an accu. -
A reactor without neighbor bonus needs 4 heat exchangers so that all its heat gets consumed. For each 100% neighbor bonus, the reactor needs 4 more heat exchangers.


=== Order of with accu connected networks ===
{| class="wikitable"
! Ideal Ratio !! Simple Ratio !! Building
|-
| 2 || 1 ||{{imagelink|Offshore pump}}
|-
| 233 || 116(12) || {{imagelink|Heat exchanger}}
|-
| 400 || 200(20) || {{imagelink|Steam turbine}}
|}


http://www.factorioforums.com/forum/viewtopic.php?f=8&t=4814
== Heating tower {{SA}} ==


== Ways to store energy ==
The [[Heating tower]], initially researched on [[Gleba]], is an alternate source of heat for [[Heat pipe]]s and [[Heat exchanger]]s. Unlike nuclear reactors, heating towers are traditional [[burner devices]], burning standard [[fuel]]s.


When it is about storing energy for later there are two questions:
Heating towers burn fuel, extracting 16MW of power from the fuel. However, because they have 250% efficiency, they generate 40MW of heat from the fuel. Like a nuclear reactor, the heat must be transferred to heat exchangers to generate useful electricity. Since they use the same fuel, but can produce 2.5x the energy from it, one can think of a heating tower as a [[boiler]] "Mk 2".
* Which technology level is needed?
* How much afford to built the structure up?


A single heating tower can produce the same power output as a single nuclear reactor. However, they do not get neighbor bonuses the way reactors do. As such, the ratio of heating towers to exchangers is always 1:4.


Dependent of the current technology-level this is a list of how you can store energy:
Like reactors, they have a maximum temperature of 1000 C. And also like reactors, they will continue to burn fuel even after they reach their maximum temperature. This gives them a secondary use as a quick way to dispose of unwanted burnable materials, such as excess fruit products/[[spoilage]] on Gleba or excess solid fuel on [[Fulgora]].


* Principle: Adding lots of pipes and use much more steam-engines as really needed. Pipes store some energy, of course very little, but much enough to handle short energy drops of some seconds. In every case the over-usage of your energy production might be easier visible, if clever planned.
Note that heating towers produce more pollution per MW of power produced than boilers, even for the same energy output. This only matters for [[Nauvis]]; using heating towers for power, or even [[biter egg]] disposal, can draw [[Enemies]] to your base.
* As soon as you have oil-tanks, you can store quite significant amounts of hot water in them. See [http://www.factorioforums.com/forum/viewtopic.php?f=6&t=4770&hilit=+water#p36469 this article].
* This techniques stretches the time you can burn coal for you energy need, but sooner or later you will switch to accumulators. See [[Power_Production#Solar_Farming|Solar Farming]].
* Sooner or later you will also [[Power_Production#How_to_switch_off_steam_engines_in_the_night.2C_when_enough_accumulator_capacity_is_available.3F|switch of the steam engines, when you don't need them]].
* With small pumps you can control the flow of water. See [[Power_Production#Storing_hot_water|below]].


== How to switch off steam engines in the night, when enough accumulator capacity is available? ==
== Fusion power{{SA}} ==
Fusion power requires the production of two ingredients to function: [[fusion power cell]]s and [[fluoroketone (cold)]]. Both can only be produced on [[Aquilo]] using the planet's exclusive fluid resources, and [[holmium plate]]s imported from [[Fulgora]].


At some point, when you have enough [[solar panel]]s and [[Electric network#Storage|accumulator]]s you may use the [[steam engine]]s only as silent power-reserve, for example at the end of the night after a long fight. This is normally not possible, because [[steam engine]]s have a higher priority than accumulators - accumulators are only discharged if nothing else delivers. Or in other words, when the sun goes down, the steam engines turn on to keep the accumulators charged.
[[Fusion reactor]]s consume the power cells, cold fluoroketone, and electricity to produce [[plasma]]. The plasma is fed into [[fusion generator]]s which produce electricity and [[fluoroketone (hot)]]. The hot fluoroketone must then be fed into a [[cryogenic plant]] to cool it back down, which can produce an self-sustaining loop. However, as the reactors require electricity (10 mW) to generate plasma, there must be some other power source already on the network to jump-start the system. After that, even a single fusion generator will create enough power to sustain the reactor.


But you can trick around this:
Because the fluids which produce the power cells and hot fluoroketone cannot be [[barrel|barrelled]], production of them is confined to Aquilo. However, as the cold fluoroketone ''can'' be barreled, it and the power cells can be shipped to other planets with relative ease.


[[File:T&T electric network1.jpg|700px]]
=== Ratio calculations ===


The accumulator (hovered) is loaded from the main network. The accu-powered-network unloads this accu to power the fast inserter. If the accu is empty, the fast inserter doesn't work anymore, but the basic inserter remains working, because he is powered by the main network. He unloads the remaining wood from the chest. The chest gets empty and the smart inserter begins to work, filling up coal into the boiler.
Fusion reactors produce plasma at a base temperature of <math>1,M^\circ \text{C}</math>. Each directly connected reactor adds an additional <math>1,M^\circ \text{C}</math> to the maximum achievable plasma temperature. The actual plasma temperature depends on the neighbor bonuses, which are determined by the arrangement of reactors and their current plasma production rate. For example, if a reactor produces plasma at its maximum rate, all reactors connected to this reactor receive a 100% neighbor bonus. The temperature used by generators is the average plasma temperature of all reactors in the setup.


For simpleness we reduced it to only one boiler/steam engine, normally much more is needed to make sense! Note, that you only need to program the first inserter. Place the others with pressed shift-key. All you have to do then is to connect it with the wire.


Basically this works, because the accumulator in this picture unloads a bit faster, than the accus in the main network, because he stays in '''two networks''' and so a bit more power is needed. It is recommended to place a second accu in neighborhood, which sits in the main network to have a direct reference.
The optimal ratio of fusion reactors to generators can be calculated in a single step:


You can trim the accu powered network exactly to your needs by adding more accumulators or place some lights, or put in more wood, which extends or shorten the time before the accu(s) - and so the chest - is empty. With some experience you can trim this so, that the main accu power is empty after the steam engines are full powered again (it takes some time, until the boilers heat the water and steam engines are at full power again.)
<math>G = (R + N) \cdot \frac{P_{O}}{P_{C}}</math>


===Another example===
where:


:[[File:Autoshutoff2.png|300px|thumb|The red circle is the "sensor". Watch the green wires going to the inserters.]]
* <math>G</math> is the optimal number of fusion generators for the given reactor setup
* <math>R</math> is the number of fusion reactors
* <math>N</math> is the sum of the neighbor bonuses of all reactors (expressed as an integer)
* <math>P_O</math> is the maximum plasma output of a reactor
* <math>P_C</math> is the maximum plasma consumption of a generator


The chests with the burner inserters holding wood in his hand (so the chests must be filled with wood), is for fallback, if coal goes out.
Thus, the optimal reactor-to-generator ratio is <math>R:G</math>


Various different setups seem possible...


----
If the fusion reactors and generators have the same quality tier (e.g. normal), then the formula simplifies to:


===Notes===
<math>G = 2 \cdot (R + N)</math>


Tip for placing many smart inserters: Place the first inserter, program it and then place the rest of the inserters while holding SHIFT. This copies the settings from the inserter you already configured.


For more informations about that you can also look into this [http://www.factorioforums.com/forum/viewtopic.php?f=8&t=976 thread].
'''Note''':


After running, there is always some rest-energy in the steam-engine, the pipes and boiler. This is used at the beginning of the night, this is quite normal and cannot be avoided yet.
* This formula applies to all quality tiers and mixed setups where reactors and generators share the same quality tier respectively.
* Initially, a not fully utilized fusion power setup will produce plasma at a lower temperature than what is possible. As more power is needed, more plasma is produced, and therefore the neighbor bonuses rise. With rising neighbor bonuses, the resulting plasma temperature also increases, resulting in more efficient plasma usage. This cycle continues until the setup reaches its maximum plasma temperature, allowing it to deliver peak power output.


This complicated setup might be replaced by an easier way in some future; sensors to measure the current state of accumulator capacity or pollution factor, switch the network off, instead of the inserter; there are many ideas.
== Ensuring enough energy is produced ==


<br clear=all>
Try this checklist before you completely revamp your power source. You may also use this to rectify [[Glossary#B|brownouts/blackouts]].
== What can be seen from the electric network info? ==


[[File:Electric_Network_Info.jpg|700px|The Electric Network Info GUI]]
* Did you connect the steam engine to the [[electric system]]? If not, a small yellow triangle will flash. To fix, Add some [[Small electric pole|power poles]] near the steam engines that go to machines needing that power. Any power pole will work.
* Is steam able to reach all steam engines?
* Do your pipes have water? Look at the windows in the pipes, hover over the pipes! Place some pipes or a tank at the end to see if there is really water coming through. If not, ensure all [[pipe]]s or [[Pipe to ground|underground pipes]] are connected together.
* Is the factory producing enough fuel (coal, solid fuel, uranium fuel cells)?
* Are there enough steam generators (boilers, heat exchangers)?
* Are there enough steam engines/turbines?


The Electric network info GUI can be accessed by left-clicking any electric pole nearby.
See also the [[Tutorial:Applied_power_math|applied power math tutorial]] to answer the question ''how much coal do I need?''


'''You can see only the info from the electric network where that pole is connected to!''' Unlike the production-info (press P) the electric network info is not globally measured, but by network.
{{C|Production{{!}}#Power production}} {{C|Energy{{!}}#Power production}}
 
# '''Consumption''' - What are the current consumption demands. This bar should ''always'' be full. Otherwise, it means your production is too low compared to the needed consumption.
# '''Production''' - What is the current production amount. This bar should ''never'' be full. Otherwise, it means you are at the limit of your power-production.
# '''[[Basic accumulator|Accumulator]] capacity''' - How much power is currently held inside of all your accumulators combined in [[Units|joule]]. For quick understanding: 1J = 1W * 1sec, see also [[wikipedia:Joule]]
# '''Timespan''' - Set the [[Time|time]] span for the graphs below
# '''Detailed Consumption''' - A list of consumers from highest power consumption to lowest. In the picture example, you can see that 2 [[Oil refinery|oil refineries]] take the most power, at 431 kW.
# '''Detailed Production''' - A list of producers from highest power production to lowest. In the picture example, you can see that only 9 [[Steam engine]]s produce all the electricity in the factory.
# '''Consumption Graph''' - Shows the consumption of the different parts of your factory over time. You can choose the timespan as detailed in #4 above.
# '''Production Graph''' - Shows the production of the different producers of your factory over time. You can choose the timespan as detailed in #4 above.
 
Note, that the timeframe influences the shown detailed production/consumption: the displayed watts is the summed up watts in the timeframe (in the graph below) divided by steps of that timeframe. This means you can see the consumption of radars, even if you mined them meanwhile.
 
== How to set poles? ==
 
- covering, rules with the length between poles etc. - todo -
 
== How to drag electric wires myself? ==
 
- basic stuff, pressing shift when setting a pole etc. - todo -
 
== How to slow down research/production? ==
 
- Mainly about using different networks, networks connected with accus to limit power - todo -
 
== Solar Farming ==
 
http://www.factorioforums.com/forum/viewtopic.php?f=8&t=1865
 
 
== Liquid network ==
There are some points, which can show you, what needs or can be changed in the liquid network:
* If your steam engines can keep up 510 W of output during heavy load (when electric poles display satisfaction below 100%), it is safe to add more engines.
* If an engine displays a temperature below 100 degrees, add more boilers.
* If you look into the engines and the available energy is below 100%, add boilers/pumps or add a new line to your power plant.
* If needed energy is much below the available energy, all is fine.
* There are also tricks to avoid using too much power. See [[Electric network]].
 
=== Storing hot water ===
 
http://www.factorioforums.com/forum/viewtopic.php?f=8&t=3724

Latest revision as of 01:21, 27 November 2024

Electricity has to be produced before it can be transferred to consumers over the electric system. There are multiple methods to produce electricity:

Steam engine power

Each steam engine needs 0.5 boilers when running at full capacity. One offshore pump can supply 200 boilers and 400 steam engines.

The above ratio can be calculated from information available in-game: One boiler consumes 1.8MW of fuel and produces energy stored in steam at 100% efficiency. One steam engine consumes 900kW (0.9MW) of energy stored in steam, so each boiler can supply 2 steam engines: . One boiler consume 6 unit of water to produce 60 unit of steam per second, one steam engine consume 30 steam per second (3 units of water) and one offshore pump produces 1200 water per second, so each offshore pump produces enough water to supply 200 boilers: . Two steam engines per boiler give us 400. This produces the 1:200:400 ratio.

A possible setup.

Solar panels and accumulators

Optimal ratio

The optimal ratio is 0.84 (21:25) accumulators per solar panel, and 23.8 solar panels per megawatt required by your factory (this ratio accounts for solar panels needed to charge the accumulators). This means that you need 1.428 MW of production (of solar panels) and 100MJ of storage to provide 1 MW of power over one day-night cycle.

A "close enough" ratio is 20:24:1 accumulators to solar panels to megawatts required (for example, a factory requiring 10 MW can be approximately entirely powered, day and night, by 200 accumulators and 240 solar panels - this approximation differs from optimal only in that it calls for 2 extra solar panels, which is negligible but remember that the difference between the "close enough" ratio and the optimal ratio increases as you add more solar panels).

This is taken from Accumulator / Solar Panel Ratio (which calculates this in an impressive mathematical way!) and another post in that thread (which calculates the solar panel to megawatt ratio in a different way).

A small 9x9 setup demonstrating the 20:24 "close enough" ratio above.

Calculations

The optimal ratio of accumulators per solar panel relies on many values in the game. These include the power generation of a solar panel, the energy storage of an accumulator, the length of a day, and the length of a night. There are also times between day and night called dusk and dawn which complicate the calculations. In vanilla factorio, without mods which change any of these values, the optimal ratio will be the same. This ratio is

which, given the default time lengths of: day = 12500/60 s; dawn or dusk = 5000/60 s; night = 2500/60 s, and the default: Solar_power = 60 kW; Accumulator_energy = 5 MJ = 5000 kJ, gives the optimal ratio of 0.84 accumulators per solar panel. If the player uses mods which change the power generation of solar panels, or the energy storage of accumulators, but not the length of days, a simplified version of this equation can be used.

Accumulators / Solar_panels = 70 s × Solar_power / Accumulator_energy

This equation could also be used to remember the vanilla optimal ratio given its simplicity. If the only effect the mod has on the game is it changes the total length of one day, without changing the ratio of dusk : day : dawn : night, then the equation can be simplified as

Accumulators / Solar_panels = 0.002016 /s × game_day 

where game_day is the number of seconds in the game day which is 25000/60 s by default.

See also

Nuclear power

Uranium processing for nuclear power.
See also: Tutorial:Nuclear power

In general, nuclear power is produced by the following production chain: Uranium ore is mined and processed to uranium-235 and uranium-238, then uranium fuel cells are created from the two. These fuel cells are then burned in a nuclear reactor to create heat. The heat can be used to convert water to steam using a heat exchanger and the steam can be consumed by steam turbines to produce power.

A reactor without neighbor bonus needs 4 heat exchangers so that all its heat gets consumed. For each 100% neighbor bonus, the reactor needs 4 more heat exchangers.

Ideal Ratio Simple Ratio Building
2 1
Offshore pump.png
Offshore pump
233 116(12)
Heat exchanger.png
Heat exchanger
400 200(20)
Steam turbine.png
Steam turbine

Heating tower

The Heating tower, initially researched on Gleba, is an alternate source of heat for Heat pipes and Heat exchangers. Unlike nuclear reactors, heating towers are traditional burner devices, burning standard fuels.

Heating towers burn fuel, extracting 16MW of power from the fuel. However, because they have 250% efficiency, they generate 40MW of heat from the fuel. Like a nuclear reactor, the heat must be transferred to heat exchangers to generate useful electricity. Since they use the same fuel, but can produce 2.5x the energy from it, one can think of a heating tower as a boiler "Mk 2".

A single heating tower can produce the same power output as a single nuclear reactor. However, they do not get neighbor bonuses the way reactors do. As such, the ratio of heating towers to exchangers is always 1:4.

Like reactors, they have a maximum temperature of 1000 C. And also like reactors, they will continue to burn fuel even after they reach their maximum temperature. This gives them a secondary use as a quick way to dispose of unwanted burnable materials, such as excess fruit products/spoilage on Gleba or excess solid fuel on Fulgora.

Note that heating towers produce more pollution per MW of power produced than boilers, even for the same energy output. This only matters for Nauvis; using heating towers for power, or even biter egg disposal, can draw Enemies to your base.

Fusion power

Fusion power requires the production of two ingredients to function: fusion power cells and fluoroketone (cold). Both can only be produced on Aquilo using the planet's exclusive fluid resources, and holmium plates imported from Fulgora.

Fusion reactors consume the power cells, cold fluoroketone, and electricity to produce plasma. The plasma is fed into fusion generators which produce electricity and fluoroketone (hot). The hot fluoroketone must then be fed into a cryogenic plant to cool it back down, which can produce an self-sustaining loop. However, as the reactors require electricity (10 mW) to generate plasma, there must be some other power source already on the network to jump-start the system. After that, even a single fusion generator will create enough power to sustain the reactor.

Because the fluids which produce the power cells and hot fluoroketone cannot be barrelled, production of them is confined to Aquilo. However, as the cold fluoroketone can be barreled, it and the power cells can be shipped to other planets with relative ease.

Ratio calculations

Fusion reactors produce plasma at a base temperature of . Each directly connected reactor adds an additional to the maximum achievable plasma temperature. The actual plasma temperature depends on the neighbor bonuses, which are determined by the arrangement of reactors and their current plasma production rate. For example, if a reactor produces plasma at its maximum rate, all reactors connected to this reactor receive a 100% neighbor bonus. The temperature used by generators is the average plasma temperature of all reactors in the setup.


The optimal ratio of fusion reactors to generators can be calculated in a single step:

where:

  • is the optimal number of fusion generators for the given reactor setup
  • is the number of fusion reactors
  • is the sum of the neighbor bonuses of all reactors (expressed as an integer)
  • is the maximum plasma output of a reactor
  • is the maximum plasma consumption of a generator

Thus, the optimal reactor-to-generator ratio is


If the fusion reactors and generators have the same quality tier (e.g. normal), then the formula simplifies to:


Note:

  • This formula applies to all quality tiers and mixed setups where reactors and generators share the same quality tier respectively.
  • Initially, a not fully utilized fusion power setup will produce plasma at a lower temperature than what is possible. As more power is needed, more plasma is produced, and therefore the neighbor bonuses rise. With rising neighbor bonuses, the resulting plasma temperature also increases, resulting in more efficient plasma usage. This cycle continues until the setup reaches its maximum plasma temperature, allowing it to deliver peak power output.

Ensuring enough energy is produced

Try this checklist before you completely revamp your power source. You may also use this to rectify brownouts/blackouts.

  • Did you connect the steam engine to the electric system? If not, a small yellow triangle will flash. To fix, Add some power poles near the steam engines that go to machines needing that power. Any power pole will work.
  • Is steam able to reach all steam engines?
  • Do your pipes have water? Look at the windows in the pipes, hover over the pipes! Place some pipes or a tank at the end to see if there is really water coming through. If not, ensure all pipes or underground pipes are connected together.
  • Is the factory producing enough fuel (coal, solid fuel, uranium fuel cells)?
  • Are there enough steam generators (boilers, heat exchangers)?
  • Are there enough steam engines/turbines?

See also the applied power math tutorial to answer the question how much coal do I need?