User talk:JakubSTR
Welcome to the Official Factorio Wiki! Now that you have an account, there are a few key places on this Wiki that will be helpful in your efforts to improve it.
First and foremost, please be sure to read and understand the rules of this Wiki. If you have any questions or concerns with these rules, please don't hesitate to ask an Admin.
Secondly, if you're new to editing Wikis and are unfamiliar with MediaWiki's formatting, please be sure to read the help pages. In addition to the help provided by MW, we also provide a style guide that we enforce.
If you're unsure where to begin, please see the editor noticeboard, where information on the current objectives and projects of the Wiki may be found.
Again, welcome, we hope you contribute as much high quality information as you can. :) Bilka (talk) - Admin 10:58, 6 February 2018 (UTC)
Linki
https://wiki.factorio.com/index.php?title=Special:AllPages&namespace=10 https://wiki.factorio.com/Factorio:Editor_noticeboard https://wiki.factorio.com/Factorio:Wanted_pages/pl
Radionadajnik - dwa rozdziały, których nie kapuję
Maksymalna liczba radionadajników na budynek
Maksymalna liczba radionadajników działających na budynek zależna jest od wielkości budynku:
- Budynki o wielkości od 2×2 do 4×4: 12 radionadajników.
- Jest to możliwe, ale bez użycia taśmociągów oraz podajników. Konieczne jest użycie robotów logistycznych.
- Budynki o wielkości 5×5: 16 radionadajników.
- Dotyczy to tylko rafinerii. Zaletą jest fakt, że surowce i produkty są płynne (z wyjątkiem upłynniania węgla). Dzięki temu mamy miejsce na postawienie radionadajników (brak podajników i taśmociągów), a podziemny rurociąg daje dużo miejsca (9 kratek).
Maksymalna liczba radionadajników, dla budynków postawionych w rzędzie:
- Rząd budynków o rozmiarze 3×3: 8 radionadajników.
- Każdy budynek może być w zasięgu 8 radionadajników (budynki na końcu rzędu - 11). Wokół rzędu budynków stawiamy dwa rzędy radionadajników
- Every building in the row can be in range of 8 beacons (end-of-row buildings possibly more) if a double row of beacons (no spaces between) is built in parallel (may be up to 2 tiles distant). However, the center row of buildings to be boosted must be offset relative to the beacon row; i.e., the center tile of no building on the center row may lie on a line connecting the center tiles of any pair of facing beacons on the two beacon rows.
- Row of 5×5 buidings: 10 beacons.
- The same rules apply as before, with the exception that now the center row must not be offset; i.e., centers of boosted buildings must align with the centers of some beacon pair. This requires leaving a gap of 1 tile between buildings on the center row (assuming the beacon rows are gapless). As the only beacon-eligible 5×5 buildings are oil refineries, the free tile is actually useful to make the row player-traversable (a gapless row of refineries is not).
Opłacalność
Radionadajniki mogą zwiększyć możliwości fabryki. Należy pamiętać, że zużywają dużo energii (480 kW), zajmują miejsce, komplikują logistykę, a także są drogie w produkcji. Dlatego, budując kompletną linię produkcyjną, znacznie lepiej jest stawiać radionadajniki w rzędzie, a nie wokół konkretnej maszyny. Znacznie upraszcza logistykę.
Obniża to korzyści płynące z liczby radionadajników (dla budynków 3x3 zamiast 12 mamy 8 radionadajników), ale niwelujemy to przez dużą liczbę maszyn, na które działają radionadajniki.
Liczbę potrzebnych radionadajników, postawionych w podwójnym rzędzie, przy rzędzie budynków produkcyjnych (o wielkości 3x3), można wyliczyć ze wzoru 2n + 6
, gdzie n to liczba budynków produkcyjnych.
Średnia liczba radionadajników na budynek obliczamy ze wzoru 2 + (6 ÷ n)
. Gdy n idzie w nieskończoność to wynik zbliża się do 2 (co oznacza 75% mniej radionadajników). Dla przykładu, przy liczbie maszyn n = 10, średnia liczba radionadajników na budynek wynosi 2.6, co daje redukcję o 67.5% liczby potrzebnych radionadajników.
Multi-row arrays
For large numbers of buildings to be boosted, efficiency can be further improved by separating production buildings into multiple rows. In this case, the beacons in all but the edge rows of the array can be shared by the two rows of production buildings on either side. (Note that it does not matter if these are producing different recipes and / or are different buildings altogether.) The total number of beacons required, assuming 3×3 sized production buildings and rows of equal length, is B(r,c) = (r + 1)(c + 3) = rc + 3r + c + 3
, where r is the number of rows of production buildings and c is the number of production buildings in a single row.
The number of beacons per boosted building is then (3 ÷ rc) + (1 ÷ r) + (3 ÷ c) + 1
, which tends to 1 as both r and c go to infinity. For finite arrays, the optimum number of rows is given by r = -0.5 + sqrt[(n ÷ 3) + 0.25]
, where n is the total number of buildings to be boosted.
The formula above does not generally return integer results. If the r thus found is non-integer, iterate around it, i.e., calculate the number of beacons needed with floor(r) (the next lower integer) and ceiling(r) (the next higher integer) rows and compare the results. For each such integer r, calculate c as floor(n ÷ r), then calculate the number of beacons as B(r,c) + mod(n,r) + 1, where B(r,c) is given above and mod(n,r) is n modulo r, i.e., the remainder of (n ÷ r), equal to n - (r × c).
There will in either case be mod(n,r) buildings "left over"; these should be appended one per row to the ends of a contiguous block of neighboring rows for the total beacon count calculation above to be valid. Other configurations for the leftovers (e.g. all appended to the end of a single row, one each at the end of every second row, etc.) require a higher number of beacons to cover.
Optimal arrays
For 3×3 structures, arrays satisfying c = 3r
are optimal, in the sense that they minimize the number of beacons required to cover the total number of structures (rc), therefore allowing the most use out of an individual beacon. Since structures may only be built in integer amounts, there are, below a reasonable cutoff on total array size, only a finite number of integer structure counts rc with which an optimal array such that c = 3r
and c and r are integer may be built. The first few counts, along with associated array sizes and beacons-to-structures ratios, are summarized in the table below.
Structures | Rows | Columns | Beacons | Beacons per structure | Dimensions (tiles)* |
---|---|---|---|---|---|
3 | 1 | 3 | 12 | 4.00 | 18×11 |
12 | 2 | 6 | 27 | 2.25 | 27×19 |
27 | 3 | 9 | 48 | 1.78 | 36×27 |
48 | 4 | 12 | 75 | 1.56 | 45×35 |
75 | 5 | 15 | 108 | 1.44 | 54×43 |
108 | 6 | 18 | 147 | 1.36 | 63×51 |
147 | 7 | 21 | 192 | 1.31 | 72×59 |
... | ... | ... | ... | ... | ... |
3r^2 | r | 3r | (r + 1) (3r + 3) | 1 + 2/r + 1/r^2 | (9r + 9) × (8r + 3) |
Notes to table:
- Array dimension in tiles (last table column) assumes 2 tiles' space (e.g. inserter + chest) is left either above or below each row of structures, while no extra space is left anywhere else.
- The 5-row array (75 structures) is the largest that can be covered by a logistic network generated from roboports located outside its footprint. For larger arrays, at least a minimal number of roboports would need to be strategically placed in the interior to provide coverage, thereby worsening the beacons-to-structures proportion somewhat.