In other languages:

# User:Fried biter/workspace

まさに信号の使い方を学び始めたばかりの初心者諸君におかれては、全ての交差点付近にレーダーを配備し、問題をすばやく特定できるようにしておくことをおすすめする。また、新たな列車や駅がシステムに追加された際は、燃料補給の自動化を可能な限り早く行っておくことも推奨される。列車は時刻表上のどこかの駅で燃料を補給されてもよいし(このとき燃料を駅に輸送することもある)、独立した燃料補給駅を時刻表に書き加えても良い。

## 通常信号(Regular signal)とブロック

いつだって、線路に1編成より多くの列車が存在するなら衝突事故が発生しうる。これを防ぐため、道中と交差点に信号を設置しよう。通常の列車用信号 はその手前の線路ブロックを、次の信号か線路の終端かまで保護する。信号は、どのブロックにも1編成までしか存在できないことを保証してくれる。すでに列車が存在するブロックに2編成目の列車が侵入しようとすると、そのブロックへと続く(直前の)信号で止められて待たされる。

この画像では、線路は上から順に:

1. 左から右、
2. 右から左、
3. 双方通行、
4. 双方通行、
5. 左半分は双方通行で、分岐した上の線路は右から左、下の線路は左から右。

## 連動式信号

Using signals can lead to trains waiting for other trains. As a consequence, there might be a chain of trains, each waiting for the next, with the last waiting for the first. This situation is called a deadlock, because the trains will wait forever or until the situation is resolved manually. It should be avoided and resolved as soon as possible because every train going through the area will get stuck. The most frequent causes of deadlocks are

1. trains waiting on intersections and
2. a rail network that does not allow enough space for trains.

The image above shows a deadlock caused by missing chain signals since only regular rail signals were used. As a result trains can wait on a crossing which leads to a deadlock. A corrected version of this intersection can be found above. The eight signals before and on the intersection should be replaced by chain signals, the ones leading out of the intersection can stay as they are. As stated above, in general chain signals should be used before and on intersections.

The deadlock in the image happened because there is a circle in the network which was used by more trains than can fit into the circle. The signals are correct; to fix the deadlock the circle must be removed or less trains need to be routed through this area.

This deadlock also happened because there were too many trains in a too small circle. It shows that a deadlock can happen with as few as two trains. In this case the deadlock could also have been avoided by replacing the marked signal with a chain signal, because it would ensure that only one train can enter the offending circle. However this could lead to trains waiting on the main line, so a waiting area for trains near the station should be added.

## Signal spacing

The image shows a deadlock between two T-junctions. It happened because while a train was waiting at the intersection, its tail end was still in the last intersection. The junctions when taken individually are signaled correctly, however they are too close to each other. One might argue that they form a single big intersection. There are two ways to fix this: the regular signals between the two junctions could be turned into chain signals or the junctions could be moved further away from each other.

After an exit signal of a junction, the next signal must be at least far enough away to fit the longest train in the rail system between the signals. In general, after every regular signal there should be at least that much space.

## Splitting rail blocks

The following aims to explain where signals should be placed. Long uninterrupted rail tracks should have signals at regular intervals because this allows more trains to move on the track simultaneously leading to higher throughput. Crossings should be separated from uninterrupted rails with signals. Inside crossings, signals should be used so that multiple trains can pass through the crossing without slowing down - for example trains going in opposite directions should not have to slow down for each other, so they need to pass through different blocks inside an intersection. The examples below all follow these rules.

## Examples

The most common way to build a rail system is using two parallel rails, one for each direction. The examples mostly follow this architecture. A single bidirectional rail line should not be used for 'main' rail lines in most situations.

### T-Junction

The image shows a basic three way junction. Rail signals have been placed inside the junction to ensure that more than one train can enter the junction in some cases. For example for one train going left to right and one going right to left, the trains will pass through different blocks: the first will go through the left yellow, the blue and the lower right yellow block; the second will use the upper yellow and upper red blocks. Because they use different blocks, they can use the junction simultaneously. While this is not strictly necessary for a junction to work, it will allow better throughput at a low cost.

### Waiting area

If multiple trains use the same station, the trains will wait on the main rail line which leads to a traffic jam in the network and can cause deadlocks. One way to avoid this is to add waiting areas for trains at each station.

The image shows a shared waiting area for two stations. The signals leading into the waiting areas are regular signals because this is where trains are expected to wait for an extended time. The signals leading out of the waiting areas are chain signals because the track from the waiting areas to the stations should not be blocked. The stations are also in different blocks to make sure that all stations can be used simultaneously.

There are two ways to design waiting areas, parallel (as above) and sequential. The parallel version is easily extendable, takes less space and multiple stations can share a parallel waiting area. The sequential version as shown below is easier to set up but cannot be shared by multiple stations (and has very minor UPS benefits). Waiting areas are often referred to as stackers.